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Literature

• Robust Regression 
Hamilton Ch 6 p183-212



Ref.: 
http://www.svt.ntnu.no/iss/Erling.Berg
e/

Fall 2009

© Erling Berge 2009 2

Fall 2009 © Erling Berge 2009 3

Robust Regression
• Has been developed to work well in situations 

where OLS breaks down. Where the OLS 
assumptions are satisfied robust regression are 
not as good as OLS, but not by very much

• Even if robust regression is better suited for 
those who do not want to put much effort into 
testing the assumptions, it is so far difficult to 
use

• Robust regression has focused on residuals with 
heavy tails (many cases with high influence on 
the regression)
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Regression of mortality on air pollution
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OLS: 
Y=918.4+
7.97ln(air pollution)
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Robust regression of mortality on air pollution
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OLS: 

Y=918.4+

7.97ln(air pollution)

Robust Regression: 

Y= 891.7+19.46ln(air pollution)
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Robust regression and SPSS
• SPSS do not have a particular routine that 

performs robust regression
• It can possibly be done within the Generalized 

linear models procedure <but I have not tested it 
our>

• It can be done by weighted OLS regression, but 
then it is required that we make the weight 
functions and go through the iterations one by 
one including computation of weights every time

• This procedure will be outlined below
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ROBUST AND RESISTANT
• RESISTANT methods are not affected by 

small errors or changes in the sample data
• ROBUST methods are not affected by small 

deviations from the assumptions of the model
• Most resistant estimators are also robust in 

relation to the assumption about normally 
distributed residuals

•
• OLS  is neither ROBUST nor RESISTANT
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Outliers is a problem for OLS
Outliers affect the estimates of
• Parameters
• Standard errors (standard deviation of 

parameters)
• Coefficient of determination
• Test statistics
• And many other statistics
Robust regression tries to protect against this by 

giving
less weight to such cases,  
not by excluding them 
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Protection against NON-NORMALE 
residuals

Robust methods can help when
• the tails in the distribution of the residuals 

are heavy, i.e. when it is too many outliers 
compared to the normal distribution

• Unusual X-values have leverage and may 
cause problems

But for other causes of non-normality 
robust methods will not help
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Estimation methods for robust regression

• M-estimation (maximum likelihood) minimizes 
a weighted sum of the residuals. This can be 
approximated by the weighted least squares 
method (WLS)

• R-estimation (based on rank) minimizes a sum 
where a weighted rank is included. The 
method is more difficult to use than M-
estimation

• L-estimation (based on quantiles) uses linear 
functions of the sample order statistics 
(quantiles) 
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IRLS-
Iterated Reweighted Least Squares

M-estimation by means of IRLS needs   
1. Start values from OLS. Save the residuals
2. Use OLS residuals to find weights. Larger 

residuals gives less weight 
3. Find new parameter values and residuals with  

WLS
4. Go to step 2 and find new weights from the 

new residuals, go on to step 3 and 4, until 
changes in the parameters become small 

Iteration: to repeat a sequence of operations
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IRLS
• IRLS is in theory equivalent to M-

estimation
• To use the method we need to compute 
• Scaled residuals, ui , and a
• Weight function, wi ,that gives least weight 

to the largest residuals
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Scaling of residuals I

• Scaled residual ui

– s is the scale factor and ei residual

• The scale factor in OLS is the estimate 
of the standard error of the residual:   
nb! se is not resistant 

• A resistant alternative is based on 
MAD, "median absolute deviation"
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Scaling of residuals II

The scale factor (standard error of the distribution) 
Using a resistant estimate will be 
• s = MAD/ 0.6745 = 1.483MAD
and the scaled residual
• ui = [ei / s ] = (0.6745*ei)/MAD
In a normal distribution s= MAD/ 0.6745 will estimate 
the standard error correctly like se
In case of non-normal errors s= MAD/ 0.6745 will be better. 
This is a resistant estimate, se is not resistant 

( )i iMAD median e median e= −| |
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Weight functions I

• Properties is measured in relation to OLS 
on normally distributed errors. 

• The method should be “almost as good”
as OLS on normally distributed errors and 
much better when the errors are non-
normal

• Properties are determined by a “calibration 
constant” (c in the formulas)
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Weight functions  II
• OLS-weights: wi = 1 for all i 
• Huber-weights: weights down when the scaled  

residual is larger than c, c=1,345 gives 95% of 
the efficiency of OLS on normally distributed 
errors

• Tukey’s bi-weighted estimates get 95% of the 
efficiency of OLS on normally distributed errors 
by gradually weighting down scaled errors until 
|ui| ≤ c = 4.685  and by dropping cases where 
the residual is larger  
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Huber-weights
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Tukey weights
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• Tukey weighting in IRLS is sensitive for start values of 
the parameters (one may end up at local minima) 
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Standard errors and tests in IRLS

• The WLS program cannot estimate 
standard errors and test statistics correctly 
by IRLS

• A procedure that works is described by 
Hamilton on page 198-1999
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Use of Robust Estimation
• If OLS and Robust estimates are different it 

means that outliers have influence on the OLS 
results making them unreliable. Results cannot 
be trusted

• Robust predicted values will better portray the 
bulk of the data

• Robust residuals will better at discovering which 
cases are unusual 

• Weights from the robust regression will show 
which cases are outliers

• OLS and RR can support each other
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Fig 6.9 Hamilton: OLS and RR on untransformed 
data
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Fig 6.10 Hamilton: OLS and RR on untransformed 
data when two outliers are removed
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RR do not protect against leverage

• RR with M-estimation protects against unusual y-
values (outliers) but not necessarily against 
unusual x-values (leverage)

• Efforts to test and diagnose are still needed 
(heteroscedasticity is still a problem for IRLS)

• Studies of the data and transformation to 
symmetry will reduce the risk of problems 
appearing

• No method is “safe” if it is used without 
forethought and diagnostic studies of data 
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Robust Multippel Regresjon
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Multiple OLS regression with transformed variables:
effect of transformation
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OLS with backward elimination gives

,0006,2154,39827,335SQRT_pct_non_white
,005-2,8956,204-17,958MEDIAN EDUCATION OF POP 25+
,000-4,228,504-2,132AVG. JANUARY TEMPERATURE, F
,0013,677,6402,352AVG. YEARLY PRECIP. INCHES
,0003,7684,63617,469LN_hc_pollution
,00011,92982,674986,261(Constant)

Sig.tStd. 
Error

BDependent Variable: 
AGE-ADJUSTED MORTALITY/100K

• Robust regression gives predicted y:
• Y= 1001.8+17.77x1i+2.32x2i-2.11x3i-19.1x4i+26.2x5i
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Multiple OLS regression with transformed variables
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Four estimates of the relationship 
mortality – air pollution

17.7717.475 variables
19.467.971 variable
RobustOLS

• In the five-variable model there are new cases  
with influence on the line of regression 

• Removing the 5 cases that have the highest  
leverage parameter (hi) do not give substantial 
changes in the coefficients

• Note that in RR the 
bivariate regression 
comes pretty close to the 
result of the multivariate 
regression

Effect of air pollution
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Robust Regression vs
Bounded Influence Regression

• Robust Regression protect against the 
effect of outliers (unusual y-values) if 
these do not go together with unusual x-
values

• Bounded Influence Regression is 
designed to protect against influence from 
unusual combinations of x-values
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BI - Bounded Influence Regression

• BI-methods are made to limit the influence 
of high leverage cases (large hi = high 
leverage)

• The simplest way of doing this is to modify 
the Huber-weights or Tukey-weights in the 
IRLS procedure for RR (robust regression) 
with a factor based on the leverage 
statistic
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Bounded influence: modification of weights

• Expand the weight function with a weight based 
on the leverage statistic  hi

• wH
i = 1 if hi ≤ cH

• wH
i = (cH/ hi) if hi > cH

• cH is often set to the 90% percentile in the 
distribution of hi

• Then the IRSL weight becomes wi wH
i where wi

is either the Tukey- or Huber-weight that 
changes from iteration to iteration while wH

i is 
constant 
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Bounded influence as a diagnostic tool

• Estimation of standard errors and test 
statistics becomes even more complicated 
than for the M-estimators mentioned 
above

• We can use BI estimates as a descriptive 
tool to check up on other estimates

• One (somewhat) extreme example: PCB 
pollution in river mouths in 1984 and 1984 
(Hamilton table 6.4)
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Fig 6.15 and 6.16 Hamilton
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Fig 6.17 Hamilton
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Conclusions
• When data have many outliers robust methods will have 

better properties than OLS
– They are more effective and give more accurate confidence intervals 

and tests of significance  
• Robust regression can be used as a diagnostic tool

– If OLS and RR agree we can have more confidence to 
the OLS results

– If they disagree we will 
• Know that a problem exist
• Have a model that fits the data better and identifies 

the outliers better
• Robust methods does not protect against problems that are 

due to curvilinear or non-linear models, heteroscedasticity, 
and autocorrelation 


